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Abstract Recent developments in quantum chemistry, perturbative quantum field
theory, statistical physics or stochastic differential equations require the introduction
of new families of Feynman-type diagrams. These new families arise in various ways.
In some generalizations of the classical diagrams, the notion of Feynman propagator is
extended to generalized propagators connecting more than two vertices of the graphs.
In some others (introduced in the present article), the diagrams, associated to non-
commuting product of operators inherit from the noncommutativity of the products
extra graphical properties. The purpose of the present article is to introduce a general
way of dealing with such diagrams. We prove in particular a “universal” linked cluster
theorem and introduce, in the process, a Feynman-type “diagrammatics” that allows
to handle simultaneously nonlocal (Coulomb-type) interactions, the generalized dia-
grams arising from the study of interacting systems (such as the ones where the ground
state is not the vacuum but e.g. a vacuum perturbed by a magnetic or electric field,
by impurities...) or Wightman fields (that is, expectation values of products of inter-
acting fields). Our diagrammatics seems to be the first attempt to encode in a unified
algebraic framework such a wide variety of situations. In the process, we promote
two ideas. First, Feynman-type diagrammatics belong mathematically to the theory
of linear forms on combinatorial Hopf algebras. Second, linked cluster-type theorems
rely ultimately on Möbius inversion on the partition lattice. The two theories should
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therefore be introduced and presented accordingly. Among others, our theorems
encompass the usual versions of the theorem (although very different in nature, from
Goldstone diagrams in solid state physics to Feynman diagrams in QFT or probabilistic
Wick theorems).

Keywords Linked cluster theorem · Feynman diagram ·
Combinatorial Hopf algebra · Cumulant · Truncated moment function

1 Introduction

The attempts to clarify the mathematical framework underlying quantum chemistry,
solid state physics, quantum field theories (QFT) and connected topics such as—for
example, the grounds for the functional approaches, the principles underlying renor-
malization—as well as attempts to deepen our current understanding of widely used
techniques (effective Hamiltonians, adiabatic limits...) are often hindered by very basic
questions regarding the underlying mathematical methods. This is particularly obvious
when it comes to developing new tools, see e.g. our studies of enhanced algorithms and
formulas for the computation of eigenstates of Hamiltonians when the (unperturbed)
ground state is degenerate [1–3], or of the combinatorics of one-particle-irreducibility
for interacting systems [4].

The present article focusses on diagrammatics. We argue that Feynman-type
diagrammatics belong mathematically to the theory of linear forms on combinato-
rial Hopf algebras, which allows to generalize the theory to a much wider setting than
the classical one. We cover the usual examples corresponding to vacuum expectations
over commutative products of fields where the propagators are represented by edges-
this includes for example the various Goldstone-type diagrams and the perturbative
expansions parametrized by Feynman diagrams in quantum field theories. However
we go beyond and cover the case of expectations over general states, which requires the
introduction of generalized diagrams [4,5]. The same combinatorics happens to pro-
vide a pictorial description of cumulants in probability. The Hopf algebraic approach
also allows to study expectations of products of free fields (Wightman fields) and
derive new Feynman diagram expansions in this setting.

In a second part, we prove general linked cluster theorems, covering all these cases
and making as explicit as possible the link between the elementary algebra underlying
the theorems and the graphical content (that relies on connectedness in the graph-
theoretical sense). Notice that we avoid deliberately functional methods (see e.g.[6]):
although very efficient to derive the classical QFT linked cluster theorem (using a
generating function in terms of an external source), they lack the generality and sim-
plicity of the combinatorial proof. Moreover, they cannot deal with noncommutative
Feynman diagrams because functional derivatives commute. In the process, we pro-
mote another idea. Namely, linked cluster-type theorems rely ultimately on Möbius
inversion on the partition lattice.
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Notation

We use the following convention: since various products will be defined along the
article (such as ∗ or �), when we want to emphasize what product is used in an expo-
nential, a logarithm or any other operation, we put the product symbol in exponent, so
that log∗ means that we compute the logarithm using the ∗ product, x�n means that
we compute the n-th power of x using the �-product, and so on.

2 Free combinatorial Hopf algebras

The objects we will be interested in are combinatorial Hopf algebras in the sense
of Joni and Rota [8], that is, bialgebras which coproduct is of combinatorial nature
(obtained by “splitting” generating symbols according to combinatorial rules encoded
by remarkable “section coefficients”—in high-energy physics, these coefficients cor-
respond roughly to the symmetry factors of Feynman graphs). More specifically, we
will be interested in families of Hopf algebras corresponding physically to bosonic or
fermionic systems, to the usual algebraic structure of quantum fields (equipped with
a commutative product such as the normal or time-ordered product) and to Wightman
fields.

Since our results are more general than what would be required by applications to
quantum systems, we state them in full generality and will show later how they special-
ize to particular physical systems or mathematical problems. Let X be a fixed ordered
set, X = {x1, . . . , xn, . . .}. In most applications, X will be infinite and countable, so
that the reader may think to X as the set of natural numbers.

The notion of combinatorial Hopf algebra, goes back to [8]. The general notion
is ill-defined in the literature (there are many natural candidates, but at the moment
no convincing general definition). We choose here a simple and relatively straight-
forward definition suited for our purposes that reflects some of the natural properties
one expects from the notion when the underlying algebra is free commutative or free
associative.

Definition 1 We call free commutative (resp. free) combinatorial Hopf algebra any
connected graded commutative (resp. associative) and cocommutative Hopf algebra
H such that:

• (Freeness) As an algebra, H is the algebra of polynomials (resp. of tensors) over
a doubly indexed (finite or countable) set of formal, commuting (resp. noncom-
muting), variables φi (xS) where S runs over finite subsets of X and i = 1 . . . nk ,
where k = |S| and where the sequence of the nk, i ∈ N is a fixed sequence of
integers.

• (Equivariance) The structure maps are equivariant with respect to maps induced by
substitutions in X . In other terms, any substitution (that is, any set automorphism)
σ induces a Hopf algebra automorphism of H which action on the generators is
defined by σ(φi (xS)) := φi (xσ(S)).

The φi (xS) are called the generators of H , the (commutative or associative) mono-
mials in the φi (xS) form a linear basis of H and are therefore called the basis elements.
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We do not look for the outmost generality, and many of our constructions and
definitions can be extended in a fairly straightforward way to more general systems.
For example, one might consider free partially commutative Hopf algebras which
generators φi (xS) would satisfy partial commutation rules (e.g. all the φ j (xi ) would
commute for a fixed i , but without φ j (xi ) and φk(xl) commuting for i �= l, and so on).
The so-constructed Hopf algebras can make sense in various applications and inherit
all the properties of free commutative or free combinatorial Hopf algebras that are
required for the forthcoming reasonings, we refer e.g. to [9] for details on the subject.

Some further remarks are in order. Recall first that, by the Leray theorem (see e.g.
Proposition 4 in [10]), any connected graded commutative Hopf algebra H is free
commutative, so that the assumption that H is freely generated as a commutative
algebra comes for free when one assumes that H is connected graded commutative.

The key point that makes the Hopf algebra combinatorial (and, as we shall see,
suited to Feynman-type graphical reasonings) is that we assume that a set of polyno-
mial generators is fixed and behaves nicely with respect to substitutions in X .

The particular case where nk = 0 for k > 1 corresponds to the classical situation
where the only propagators showing up in diagrams are the ones that describe the free
propagation of a particle.

Let us mention at last that a more pedantical definition of combinatorial Hopf alge-
bras could be given in terms of vector species, following the approach to combinatorial
Hopf algebraic structures in [11–13].

A very important consequence of the equivariance condition is the following.

Lemma 2 For any subset S of X, let us write HS for the subalgebra of H generated
by the φi (xT ), T ⊂ S. Then, HS is a Hopf subalgebra of H. Moreover, any auto-
morphism σ of X induces an isomorphism of Hopf algebras from HS to HT , where
T := σ(S).

The second property is a direct consequence of the first one since σ (by definition
of the induced map) induces an isomorphism of algebras from HS to HT . The proof of
the first assertion follows immediately from the equivariance condition. Indeed, notice
that an element of H or of H ⊗H is invariant by any substitution that acts as the identity
on a finite subset S of X if and only if it is a polynomial in the φi (xT ), T ⊂ S (or, in
H ⊗ H , a sum of tensor products of such polynomials). Now, since, for T ⊂ S, φi (xT )

is invariant by any substitution that acts as the identity on S, the same property holds
also true of �(φi (xT )), from which the Lemma follows.

3 Some remarkable Hopf algebras

Our favorite examples in view of applications to quantum chemistry, QFT and solid
state physics are simple ones. However the generality chosen (allowing for example
n2 �= 0) is natural to handle nonlocal interaction terms in the Lagrangians (think for
example of the quantum chemistry approach with Coulomb interaction). Our general
approach also paves the way to a unification of QFT techniques (Feynman-type dia-
grammatics), umbral calculus (duality and linear forms on polynomial algebras) and
combinatorics of (possibly ordered) set partitions.
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For notational simplicity, we treat only commutative algebras in the usual sense,
that is we do not treat explicitly the fermionic case (Grassmann or exterior algebras/
Fermi statistics). However, as it is well known, there are no difficulties in switching
from a bosonic to a fermionic framework -it just requires adding the right signs in
the formulas, see [14,15], but handling simultaneously the commutative and anticom-
mutative case would have required introducing consistently signs in all our formulas.
For notational simplicity, we decided to stick to the bosonic, commutative, case, and
to let the interested reader adapt our results to the anticommutative setting. We use
the langage of particle physics and quantum chemistry (so that the bosonic algebra
coincides with the algebra of polynomials).

Definition 3 (Bosonic algebra) We write BX
k for the algebra of polynomials over the

set of (formal, commuting) variables

φ1(x1), . . . , φ1(xn), . . . ; . . . ;φk(x1), . . . , φk(xn), . . .

where xi ∈ X . These algebras are naturally equipped with a coproduct � : B �−→
B ⊗B that makes them Hopf algebras (that is,� is a map of algebras). The coproduct
is defined on the generators φl(xi ) by requiring them to be primitive, that is:

�(φl(xi )) := φl(xi )⊗ 1 + 1 ⊗ φl(xi )

and extended multiplicatively to P (�(xy) = �(x)�(y)).

The lower index k should be thought of as the number of quantum fields showing
up (in a very broad sense), whereas the xi should be thought of as points, momenta
or more generally dummy integration variables. For later use, we allow k = ∞ (to
encode the countable set of eigenstates of a given many-body Hamiltonian) and will
write simply B for BX

k when no confusion can arise.

Definition 4 (Coulomb algebra) We write P X
k for the algebra of polynomials over

the set of (formal, commuting) variables φl(xi ), l ≤ k, φ(xi, j ), where i �= j ∈ X .
The coproduct is defined by requiring the generators to be primitive.

This algebra is used in non-relativistic many-body physics and quantum chemistry.
The Coulomb interaction describes the force between a charge at point xi and a charge
at point x j . These two points are linked by the interaction, and a specific variable
φ(xi, j ) is used to describe this connection.

Definition 5 (Tensor algebra) We write F X
k for the algebra of noncommutative poly-

nomials over the set of variables

ψ1(x1), . . . , ψ1(xn), . . . ; . . . ;ψk(x1), . . . , ψk(xn), . . .

xi ∈ X . The coproduct is defined by requiring the generators to be primitive.
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Various other free combinatorial Hopf algebras possibly noncommutative but fit-
ting in the general framework of the present article are described (or follow from
the results of) in [12,16]. Let us quote the Malvenuto-Reuntenauer Hopf algebra and
various Hopf algebras of tree-like structures. Although the decorated version of the
Connes-Kreimer Hopf algebra of trees in [12] may have a use for QFT, a more pro-
missing path in that direction is certainly provided by [17], the belief of which we
do share : “ultimately we think that combinatorics is the right approach to QFT and
that a QFT should be thought of as the generating functional of a certain weighted
species in the sense of [18]”. We restrict however the examples in the present article
to well-established domains of QFT and leave further extensions to future work.

4 Graphication

Let us start by recalling the construction underlying diagrammatic expansions and
show how it can be extended naturally in a noncommutative/nonlocal setting. We call
this process “graphication”, by analogy with the “arborification” process underlying
tree expansions in analysis and dynamical systems [19,20]. In all the article, as a
tribute to the physical motivations the ground field is the field of complex numbers
(although the results hold over an arbitrary field of characteristic zero).

The reduced coproduct � : H �−→ H ⊗ H is defined by ∀x ∈ H,�(x) :=
�(x)− x ⊗ 1 − 1 ⊗ x . The coproduct and reduced coproduct are coassociative in the
sense that (�⊗ H) ◦� = (H ⊗�) ◦� (and similarly for�). The iterated coproduct
and reduced coproduct maps from H to H⊗i are therefore well-defined and written

�[i], resp. �
[i]

.
We assumed in the definition of combinatorial Hopf algebras that the coproduct

is cocommutative: with Sweedler’s notation �(x) = x (1) ⊗ x (2), this means that
x (1) ⊗ x (2) = x (2) ⊗ x (1). Many of our forthcoming results could be adapted to the
noncocommutative setting. However, this hypothesis is particularly usefulf when it
comes to graphical encodings.

Definition 6 The graphication map G is the map from H to
⊕

n
(H⊗n)sym ⊂ ⊕

n
(H⊗n)

defined by:

G :=
∑

n

�
[n]

n! .

Here, the superscript sym in
⊕

n
(H⊗n)sym means that the elements in the image of

G are sums of symmetric tensor powers of elements of H . We will use the canonical
isomorphism from covariants

⊕

n
(H⊗n)sym := ⊕

n
H⊗n/Sn (where Sn stands for the

symmetric group of order n) to invariants

[x1| . . . |xn] �−→ 1

n!
∑

σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n)
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to represent invariants using the bar notation (that is, y1 ⊗ · · · ⊗ yn in H⊗n
sym is writ-

ten [y1| . . . |yn]). Notice that, by definition (since we deal with covariants), for any
permutation σ, [y1| . . . |yn] = [yσ(1)| . . . |yσ(n)].

For example, in the bosonic algebra, abbreviating φ1 to φ (a notation we will use
without further comments from now on):

G(φ(x1)φ(x2) . . . φ(xn)) =
∑

I

⎡

⎣
∏

i∈I1

φ(xi )| . . . |
∏

i∈Ik

φ(xi )

⎤

⎦

where I runs over all partitions I1
∐ · · · ∐ Ik, k = 1 . . . n of [n] := {1, . . . , n}, with

inf{i ∈ I j } < inf{i ∈ I j+1}. Or (isolating some components in the expansion):

G(φ(x1)
4φ(x2)

4) = [φ(x1)
4φ(x2)

4] + 4[φ(x1)|φ(x1)
3φ(x2)

4]
+ · · · + 18[φ(x1)

2φ(x2)
2|φ(x1)

2φ(x2)
2] + · · ·

G(φ1(x1)φ2(x1)φ3(x2)
2) = [φ1(x1)φ2(x1)φ3(x2)

2]
+ · · · + [φ1(x1)|φ2(x1)φ3(x2)

2] + 2[φ1(x1)φ3(x2)|φ2(x1)φ3(x1)] + · · ·

The same formulas hold in the tensor algebra and in the Coulomb algebras. Notice
however that, in the tensor algebra, products are noncommutative, so that the order
of the products in the monomials does matter. For example, with self-explanatory
notation:

[ψ1(x1)|ψ2(x1)ψ3(x2)
2] �= [ψ1(x1)|ψ3(x2)ψ2(x1)ψ3(x2)].

We call bracketings the terms such as [φ(x1)
2φ(x2)

2|φ(x1)
2φ(x2)

2]. The length
of a bracketing is the number of vertical bars | plus 1. The support of a bracketing �
is the set of the xi showing up in �. For example,

sup([φ3(x1)φ4(x2)
2|φ1(x1)

2φ2(x8)
2]) = {x1, x2, x8}.

For each xi ∈ sup(�), we write di for the total degree of the φ j (xi )s in � (so that for
� as above, d1 = 3, d2 = 2, d8 = 2). For later use, we also introduce the product of
two bracketings, which is simply the concatenation product:

[u1| . . . |un] · [v1| . . . |vn] := [u1| . . . |un|v1| . . . |vn].
These ideas and notation extend in a self-explanatory way to arbitrary combinato-

rial Hopf algebras. The only change regards the definition of the support and degree:
xi is included in the support of a bracketing whenever there exists a pair ( j, S) such
that i ∈ S and φ j (xS) shows up in � so that, for example,

sup([φ3(x1)φ4(x2)
2|φ1(x1)

2φ2(x8)
2|φ5(x1,5,8,10)]) = {x1, x2, x5, x8, x10}.

Similarly, the degree d8 of x8 in this bracketing accounts for the φ5(x1,5,8,10) term
and is therefore d8 = 3.
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The coefficients in the right hand side of the equation defining the graphication
will be referred to as symmetry factors. They are closely related to the structure coef-
ficients for the coproduct (in the basis provided by monomials in the chosen family
of generators, e.g. the φi (x j ) for the bosonic algebra -these coefficients were called
section coefficients by Joni and Rota [8]) but encode also the symmetries showing up
in the coproducts. Whereas, for the bosonic and Coulomb algebras, symmetry fac-
tors are defined without ambiguity, for other algebras (the tensor algebra or general
free combinatorial Hopf algebras) a given bracketing may appear in the expansion of
G(M) for various monomials M in the generators (for example, in the tensor algebra,
[ψ(x1)|ψ(x2)] appears in the expansion of G(ψ(x1)ψ(x2)) and of G(ψ(x2)ψ(x1))).
In general, we will therefore write s M

� for the symmetry factor of a bracketing � in
the expansion of G(M) and will write simply s� in the particular case of the bosonic
and Coulomb algebras (where a unique M exists giving rise to such a factor).

5 Graphical representation

Perturbative expansions in particle and solid-state physics are conveniently repre-
sented by various families of diagrams. Feynman diagrams are the most popular ones,
but there are plenty of other families with construction rules often slightly different
from the one underlying Feynman diagrams. Just to mention one interesting feature,
Feynman diagrams are usually independent of the time-coordinate of the vertices (this
is because of the definition of the so-called Feynman propagators), whereas other
families showing up in solid-state physics take into account causality systematically
to construct their diagrams. These ideas are particularly well-explained in [21], to
which we refer, also for a comprehensive treatment of the zoology of diagrammatic
expansions.

Defining a graphical representation associated to a free combinatorial Hopf alge-
bra depends highly on the structure and particular features of the algebra. We define
various such representations, by increasing order of complexity, focussing only on
the algebras (tensor, bosonic, Coulomb) we have chosen to investigate in depth. The
reader who needs to construct other taylor-made graphical representations will be able
to do so easily using our recipes (for notational simplicity and to avoid pointless ped-
antry, we omit to introduce the most general possible definitions since the process of
designing them is straightforward once the leading principles are understood on some
examples).

Let us mention that, when two bracketings U = [u1| . . . |un] and V = [v1| . . . |vn]
have disjoint supports, their product corresponds to the disjoint union of the corre-
sponding graphs (this is the usual product on Hopf algebras of Feynman graphs in
QFT, see e.g. [22]).

5.1 Commutative local case: bipartite graphs

We focus in this section on the bosonic algebra. Each Feynman bracket (say � =
[φ1(x1)φ1(x2)

2|φ2(x1)
2φ1(x2)

2φ2(x3)|φ3(x1)φ3(x2)φ3(x3)], see Fig. 1) can be rep-
resented uniquely by a bipartite (non planar) graph with unoriented colored edges
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Fig. 1 Graph of the bracketing
[φ1(x1)φ1(x2)

2|φ2(x1)
2φ1(x2)

2φ2(x3)|φ3(x1)

φ3(x2)φ3(x3)]

(i.e. by a graph with 2-coloured vertices and colored edges) according to the follow-
ing rule:

1. For each xi ∈ sup(�), recall that we write di for the total degree of the φ j (xi )s
in �. Draw a xi -labelled black vertex with di outgoing colored edges (the colors
being attributed according to the indices j of the φ j (xi ), e.g. a 4-edge black vertex
for x1 with one 1-colored edge (solid line), two 2-colored edges (dotted line) and
a 3-colored edge (dashed line).

2. Running recursively from the left to the right of�, for each term inside brackets and
bars (e.g. φ1(x1)φ1(x2)

2, then φ2(x1)
2φ1(x2)

2φ2(x3), then φ3(x1)φ3(x2)φ3(x3)),
select randomly according to the colors and powers showing up in the monomials
outgoing edges of the corresponding vertices (e.g. select one 1-colored edge from
the x1 vertex and two 1-colored edges from the x2 vertex). Connect these edges
to a new white vertex (e.g. a new white vertex with 3 outgoing colored edges).

These edge-colored bipartite graphs will be called from now interaction graphs.
See [4,5] for applications.

Some simplifications are possible in many cases of interest. For example, when the
xi s are dummy integration variables and can be exchanged freely in any computation
(e.g. of scattering amplitudes), the labelling of the black vertices can be omitted.

Another classical situation (encountered with scalar quantum field theories such as
φ3 or φ4 and in statistical physics) is the one where k = 1. In that case, there is just one
possible color for the edges, so that the coloring of the edges can safely be omitted in
the definition of the graphs. In QFT, when several fields coexist (e.g. in QED, where
k = 2), instead of using colors, practitioners use often different representations for the
edges that depend on the fields involved (typically, in QED, edges associated to elec-
trons are plain lines, whereas edges associated to photon propagation are represented
by a succession of small waves). Of course, the use of colors or the use of different
shapes for the edges are strictly equivalent and a matter of taste and habits.

Another classical simplification occurs when the only bracketings of interest for
practical applications are the ones where the only monomials showing up in the brack-
etings are products of degree 2 of the form φi (x j )φi (xk). In the corresponding graphs,
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Fig. 2 Graph of the bracketing
[φ1(x1)φ1(x2)

2|φ2(x1)
2φ1(x2)

2φ2(x3)|
φ3(x1,2,3)]

the white vertices always have two outgoing edges with the same color, so that these
vertices can be erased -what remains is a graph with only black vertices and col-
ored edges (that correspond, physically, to particle types). These are the celebrated
Feynman graphs that one encounters in QFT textbooks.

From now on we will identify systematically bracketings and the corresponding
interaction graphs.

5.2 Commutative non local case: tripartite graphs

By nonlocal case, we mean that some ni , i > 1 may be different from zero. The
canonical example we have in mind is the one of QED in the solid state picture, that is
with instantaneous Coulomb interactions (in the particle physics picture the interac-
tions are local and encoded by products of fields in the Lagrangian; this corresponds
to the commutative local case).

For simplicity (and in view of the most natural applications), we assume that the
only bracketings of interest are those in which the monomials showing up are either
monomials in the φi (x j ), or a φi (xS), |S| > 1 (in other terms, no nontrivial products
involving a φi (xS) should appear in the bracketing).

Each Feynman bracket (say for example

� = [φ1(x1)φ1(x2)
2|φ2(x1)

2φ1(x2)
2φ2(x3)|φ3(x1,2,3)])

can be represented uniquely by a tripartite (non planar) graph with two kinds of unori-
ented edges according to the following rule (see Fig. 2):

1. We distinguish between the two kinds of edges in the following way: the first type
of edge is drawn as colored lines; the second type has no color and is drawn as
a sequence of waves (as the photon propagators in QED). We call these edges
respectively plain and wavy edges.

2. For each xi ∈ sup(�), draw a xi -labelled black vertex with di outgoing edges.
Colors are attributed to the plain edges according to the indices j of the φ j (xi ),
the other edges correspond to φ j (xS)s and are wavy edges. For example, we draw
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a 4-edges black vertex for x1 with one 1-colored edge (represented by a solid line
in Fig. 2), two 2-colored edges (dotted lines) and a wavy edge.

3. Running recursively from the left to the right of �, for each term inside brackets
and bars (e.g. φ1(x1)φ1(x2)

2, then φ2(x1)
2φ1(x2)

2φ2(x3), then φ3(x1,2,3)),

• If encountering a monomial involving φi (x j )s, proceed as in the commutative
local case: select randomly according to the colors and powers showing up in
the monomial outgoing edges of the corresponding vertices (e.g. select one
1-colored edge from the x1 vertex and two 1-colored edges from the x2 ver-
tex). Connect these edges to a new white vertex (e.g. a new white vertex with
3 outgoing colored edges).

• If encountering a φ j (xS), select randomly for each i ∈ S a wavy edge outgo-
ing from the xi , black vertex, connect all these edges to new j-labelled grey
vertex.

These tripartite graphs will be called from now nonlocal interaction graphs. The
particular case of solid state physics QED enters in this framework. Moreover, the
general case we consider seems new and of interest, since it should allow to treat QED
computations in a complex background (e.g. with non trivial vacua). These concrete
applications (that originated this work, together with questions and remarks by R.
Stora) are left for future work.

Great simplifications occur in many simpler cases of interest. The first situation
encountered in pratice is the one where n1 = n2 = 1. This corresponds roughly to
the case where one class of particles is present (say electrons, up to a change from the
bosonic to the fermionic statistics) and where interactions are encoded by nonlocal
terms (Coulomb interaction lines). In that case, there is just one possible color for the
edges, so that the coloring of the plain edges can be omitted in the definition of the
graphs. Besides, since n2 = 1, the grey vertices can also be erased, so that one ends up
with bipartite graphs with two types of edges (plain and wavy). If one assumes further
that the only graphs of interest are those with white vertices with two outgoing edges,
these vertices can be also erased. One ends up with the familiar Feynman diagrams
with black vertices only and two types of edges corresponding to electron propagators
and Coulomb interactions.

5.3 Noncommutative local case

We focus in this section on the tensor algebra. Each Feynman bracket (say � =
[ψ1(x2)ψ1(x1)ψ1(x2)|ψ2(x1)ψ1(x2)ψ2(x3)ψ1(x2)ψ2(x1)|ψ3(x3)ψ3(x1)ψ3(x2)]) can
be represented uniquely by a bipartite (non planar) graph with unoriented colored and
locally ordered edges (i.e. by a graph with 2-coloured vertices and colored, locally
ordered edges) according to the following rule (the rule will make clear the meaning
of “local order” that corresponds to an order on the edges reaching a white vertex)
(see Fig. 3):

1. Proceed first as in the commutative case: for each xi ∈ sup(�), recall that we write
di for the total degree of the φ j (xi )s in �. Draw a xi -labelled black vertex with di

outgoing colored edges (the colors being attributed according to the indices j of
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Fig. 3 Graph of the bracketing
[ψ1(x2)ψ1(x1)ψ1(x2)|ψ2(x1)ψ1(x2)ψ2(x3)

ψ1(x2)ψ2(x1)|ψ3(x3)ψ3(x1)ψ3(x2)]

the φ j (xi ), e.g. a 4-edges black vertex for x1 with one 1-colored edge (solid line),
two 2-colored edges (dotted lines) and a 3-colored edge (dashed line).

2. Running recursively from the left to the right of �, for each term inside brackets
and bars (e.g. ψ1(x2)ψ1(x1)ψ1(x2), then ψ2(x1)ψ1(x2)ψ2(x3)ψ1(x2)ψ2(x1)…),
select randomly according to the colors and powers showing up in the monomials
outgoing edges of the corresponding vertices and order them according to the
order of the appearance of the colors in the (noncommutative!) monomial (e.g.
select a 2-colored edge from the x2 vertex, label it a; a 1-colored edge from the x1
vertex, label it b; a 2-colored edge from the x2 vertex, label it c). Connect these
edges to a new white vertex (e.g. a new white vertex with 3 outgoing colored and
ordered edges, where the order is defined by the labels).

These edge-colored and locally ordered bipartite graphs will be called from now
free interaction graphs.

The usual simplifications are possible in many cases of interest, we do not detail
them and simply mention that, when the only monomials showing up in bracketings are
of the formψi (xm)ψi (xl), the graphical rule amounts to consider “classical” Feynman
graphs with labelled vertices and colored and directed propagators.

The noncommutative nonlocal case could be treated similarly by mixing the con-
ventions for the noncommutative local and commutative local cases. The exercise is
left to the reader.

6 Symmetry factors and connectedness

This section is devoted to a technical but fundamental Lemma that connects the sym-
metry factors of graphs with the topological notion of connectedness. The lemma is
the ground for the proof of linked cluster theorems and is particularly meaningful in
the noncommutative case (Wightman fields). We assume in this section that the Hopf
algebra is an arbitrary free or free commutative combinatorial Hopf algebra which
generators are primitive elements (this condition is satisfied by all the combinatorial
Hopf algebras we have considered so far).
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Let us introduce first a further notation. Let x be a basis element (a commuta-
tive or noncommutative monomial in the generators) of a combinatorial Hopf algebra
which support S decomposes into a disjoint union T

∐
V (the support is defined as for

bracketings). We write xT and xV and call respectively T and V -components of x the
two basis elements (possibly equal to zero) defined by xT ⊗ xV := (PT ⊗ PV )◦�(x),
where PV stands for the projection on HV orthogonally to all the basis elements that
do not belong to HV .

The reader can check that this definition amounts to the following: to get xT ,
replace, in the expansion of x as a monomial, all the φi (xK ), K ⊂ V by a 1 and all
the φi (xK ), K ∩ V �= ∅, K ∩ T �= ∅ by a zero (and similarly for xV ).

Lemma 7 Let� be a basis element and � = �1 ·�2 a bracketing or, equivalently, an
interaction graph (of any type) such that sup(�1)∩ sup(�2) = ∅ and s�� �= 0 (recall
that · stands for the product of bracketings). Topologically, this amounts to assume
that � decomposes as a disjoint union of graphs. Then:

• The basis elements �sup(�1) and �sup(�2) are non zero.

• Moreover: s�� = s
�sup(�1)

�1
s
�sup(�2)

�2

In the commutative case, this last identity can be abbreviated to s� = s�1s�2 .

Indeed, since the φi (xK ) are primitive, the coproduct of a product, say a1 . . . an , of
φi (xK )s is the sum of the tensor products ai1 . . . aik ⊗ a j1 . . . a jn−k , where {i1, . . . , ik}
is a (ordered) subset of [n] and { j1, . . . , jn−k} its (ordered) supplement. The hypoth-
esis s�� �= 0 ensures that sup(ψ) = sup(�1)

∐
sup(�2), and that in ψ , there is no

factor φi (xK ) with K ∩ V �= ∅ and K ∩ T �= ∅. The first assertion follows.

To prove the second identity, let us first notice that s�� = s
�sup(�1)�sup(�2)

� . Indeed,
let us use the same notation as previously and write� = a1 . . . an . The coproduct and
its iterations are constructed by extracting disjoint subsequences out of the ordered
sequence of the ai s. On the other hand, the basis elements showing up in �1 and
�2 belong to disjoint sets—the relative ordering of the basis elements with support
in sup(�1) and in sup(�2) in the expansion of � does therefore not matter, which
proves the identity.

We can now assume without restriction (because of the cocommutativity) that � =
[S1, . . . , Sk, T1, . . . , Tl ] with �1 = [S1, . . . , Sk]�2 = [T1, . . . , Tl ]. Besides, since �
is an algebra map, we have:

�[k+l](�sup(�1)�sup(�2)) = �[k+l](�sup(�1))�
[k+l](�sup(�2)).

The multiplicityμ� := (k+l)!s�� of� in�[k+l](�) is therefore obtained by summing
the coefficients of the tensor products (Xσ(1), . . . , Xσ(k+l)) in�[k+l](�), whereσ runs
over Sk+l/Stab((X1, . . . , Xk+l)) and (X1, . . . , Xk+l) = (S1, . . . , Sk, T1, . . . , Tl)

(here, Stab((X1, . . . , Xk+l)) stands for the stabilizer of (X1, . . . , Xk+l) in Sk+l ).
However, since the coproduct is cocommutative, these coefficients are all equal and one
can restrict the computation to the tensor products (Sβ(1), . . . , Sβ(k), Tα(1), . . . , Tα(l)),
where α and β run over permutations in Sk/Stab((S1, . . . , Sk)) and Sl/Stab((T1, . . . ,

Tl)), and multiply the result by the number of k-element subsets in [k + l] =
{1, . . . , k + l}. We get finally:
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μ� =
(

k + l

k

)

μ�1μ�2 ,

that is, s�� = s
�sup(�1)

�1
s
�sup(�2)

�2
or, in words (and slightly abusively), “the symmetry

factor of an interaction graph is the product of the symmetry factors of its connected
components”. Notice that the property holds true also in nonlocal and/or noncommu-
tative cases.

7 Amplitudes and Feynman rules

A linear form on a combinatorial Hopf algebra is unital if ρ(1) = 1 and infinitesimal
if ρ(1) = 0.

Let us recall, for example, how linear forms on BX
k , X = {x1, . . . , xn, . . .}, are

usually constructed. Let T be an arbitrary finite sequence of integers. For any polyno-
mial in k variables, say P(y1, . . . , yk) = ∑

1≤i1+···+ik≤n pi1,...,ik yi1
1 . . . yik

k , we write

P(T ) for the polynomial
∏

t∈T P(φ1(xt ), . . . , φk(xt )) ∈ BX
k . One can think of P as

the interacting part of a Lagrangian. Natural forms should then be thought of as related

physical amplitudes. For example, for k = 1, a typical P is λ y4

4! , corresponding to the
φ4 theory (see [23] for details). The Green functions of this theory are computed via
the formula

G(x1, . . . , xn) :=
ρ
(
φ(x1) . . . φ(xk)ei

∫
φ4(x)dx

)

ρ
(

ei
∫
φ4(x)dx

) ,

where ρ denotes the vacuum expectation value of the time-ordered product of fields
(see Sect. 10.1).

Let us treat now a radically different example to show the ubiquity of the approach.
Let here the role of P be taken by HI (t), the interacting Hamiltonian of time-
dependent perturbation theory (see e.g. our [1,2]): HI (t) := ei H0t V e−i H0t e−ε|t |. Let
e1, . . . , en, . . . be the eigenvectors of H0 with eigenvalues λ1 < λ2 ≤ · · · ≤ λn ≤ · · ·.
We assume for simplicity that the ground state is non degenerate (λ1 �= λ2), although
the following reasoning holds in full generality due to [1,2]. The computation of the
ground state of the perturbed Hamiltonian H0 + V relies on the computation of the
quantities such as: Y =< e1|HI (t1) . . . HI (tp)|e1 >, where t ≥ t1 > · · · > tp > −∞.
We set k = ∞ and φ2p(t j ) := e−iλpt j − ε

2 |t j | < ep|, φ2p+1(t j ) := e+iλpt j − ε
2 |t j ||ep >.

Then, HI (t) = ∑
i, j Vi, jφ2 j+1(t)φ2i (t), where Vi, j :=< e j |V |ei >. The unital form

corresponding to the computation of Y is given simply by the form on F ]−∞,t]∞ :

ρ(φi0(t0) . . . φi2k+1(t2k+1)) :=
∏

0≤ j≤k

Vi2 j+1,i2 j (φi2 j (t2 j )|φi2 j+1(t2 j+1)),

where (φi2 j (t2 j )|φi2 j+1(t2 j+1)) := φi2 j (t2 j )φi2 j+1(t2 j+1) if i2 j is even and i2 j+1 odd
and zero else. The value of the form ρ on odd products is 0. Of course, this example
is purely didactical and for such a computation the use of the formalism developed
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in the present article is largely pointless. It becomes useful when the situation gets
more involved. Actually, the simple requirement of taking efficiently into account the
divergences arising from the adiabatic expansion may involve advanced combinatorial
techniques, see, besides the articles already quoted, our [3].

It is well-known that, in many situations, Green functions such as the ones of the φ4

theory split into components parameterized by Feynman diagrams. This property also
holds for more complex theories and is best explained through Hopf algebraic com-
putations. Recall first that, since H is a Hopf algebra, the set H∗ of linear forms on H
is equipped with an (associative; commutative if H is cocommutative) “convolution”
product:

∀ρ,μ ∈ H∗, ρ ∗ μ(x) := ρ(x(1))μ(x(2)),

where we used the Sweedler notation �(x) = x(1) ⊗ x(2). Notice that, if ρ and
μ are infinitesimal forms, ρ ∗ μ(x) := ρ(x{1})μ(x{2}), where we use the notation
�(x) = x{1} ⊗ x{2}. By standard graduation arguments, the convolution logarithm of a
unital form ρ is a well-defined infinitesimal form τ on P . We extend such a τ to a linear
form (still written τ ) on P⊗n (resp. P⊗n

sym) by: τ(x1 ⊗ · · · ⊗ xn) := τ(x1) . . . τ (xn) or
τ [x1| . . . |xn] := τ(x1) . . . τ (xn).

Summing up, we get, for X an arbitrary monomial (basis element) in H , and since
τ is an infinitesimal form:

Proposition 8 (Feynman diagrams/rules expansion) For an arbitrary unital form on
H, we have:

ρ(X) = exp∗τ (X) = τ ◦ G(X),

or:

ρ(X) =
∑

�

s X
� τ(�),

where � runs over all the bracketings (or interaction graphs) in the image of X by the
graphication map.

The map τ acting on the �s is called a Feynman rule. Applying Lemma 7, with H as
in Sect. 6 we get immediately (with self-explanatory notations):

Lemma 9 Assume that � = �1 · �2, then:

s X
� τ(�) = s X1

�1
τ(�1)s

X2
�2
τ(�2).

8 The combinatorial linked cluster theorem

The combinatorial linked cluster theorem expands a linear form on a combinatorial
Hopf algebra into “connected” parts closely related to the topological notion of con-
nectedness. In this section, we show that this expansion is a very general phenomenon
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related to Möbius inversion in the partition lattice. Notations and conventions are in
Sect. 6.

We first recall some general facts on the partition lattice and Möbius inversion that
are familiar in combinatorics but probably not well-known by practitioners of Feyn-
man-type diagrammatics and linked cluster theorems (the particular case of Möbius
inversion for the partition lattice we are interested in here seems due to Schützenberger,
we refer to [24] for further details and references on the subject).

For an arbitrary set S, partitions t := {T1, . . . , Tk} of S (that is: T1
∐ · · · ∐ Tk = S,

where
∐

stands for the disjoint union) are organized into a poset (partially ordered
set, this poset is actually a lattice—two elements have a max and a min, this follows
easily from the definition of the order). We write |t | for the length of the partition (so
that |t | = k) and abbreviate the partitions of minimal and maximal length, respectively
{S} and {{s}, s ∈ S} to 1̂ and 0̂. The subsets Ti are called the blocks, and the order is
defined by refinement: for any partitions t and u, t ≤ u if and only if each block of t
is contained in a block of u.

The functions f (x, y) on the partition lattice such that f (x, y) �= 0 only if x ≤ y
form the incidence algebra of the lattice. The (associative) product is defined by convo-
lution: ( f ∗g)(x, y) := ∑

x≤z≤y
f (x, z)g(z, y). The identity of the algebra is Kronecker

delta function: δ(x, y) := 1 if x = y and := 0 else. The zeta function ζ(x, y) of the
lattice is defined to be equal to 1 if x ≤ y and 0 otherwise. The Möbius function
μ(x, y) is defined to be the inverse of the zeta function for the convolution product. It
can be computed explicitly: for x ≤ t , where t = {T1, . . . , Tk}, we have:

μ(x, t) = (−1)|x |+|t |(n1 − 1)! . . . (nk − 1)!,

where ni is the number of blocks of x contained in Ti . Using the identitiesμ∗ζ(0̂, 1̂) =
ζ ∗μ(0̂, 1̂) = δ(0̂, 1̂) = 0, we recover in particular the useful combinatorial formulas:

∑

0≤k≤|S|

∑

t

(−1)|t |+|S|(t1 − 1)! . . . (tk − 1)! = 0

where t runs over the partitions of length k of S and ti stands for the number of elements
in the i-th block Ti of t and, with the same conventions on t ,

∑

0≤k≤|S|

∑

t

(−1)|t |+1(|t | − 1)! = 0 (1)

The key application of these notions is to inclusion/exclusion computations in
the partition lattice. Namely, for an arbitrary function h(x) on the lattice, let us set:
h(y) = ∑

x≤y
h̃(x). This formula defines uniquely h̃ and, in the convolution algebra:

(h = h̃ ∗ ζ ) ⇔ (̃h = h ∗ μ)

so that h̃(y) = ∑

x≤y
h(x)μ(x, y).
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Let now x be a basis element of H with support written S, where H is as in Sect. 6.
Let ρ be a unital form on H . Recall the notation xT denoting the “T-component” of x
for an arbitrary T ⊂ S. For an arbitrary set partition t = {T1, . . . , Tk} of S, we extend
ρ to a function ρx on partitions of S and set:

ρx (t) := ρ(xT1) . . . ρ(xTk ).

Recall also the decomposition ρ(x) = ∑
� sx

�τ(�). The �s are represented by dia-
grams, among which some are connected. We set ρconn(x) := ∑

�c
sx
�c
τ(�c), where

the �c run over connected diagrams. We can then apply the machinery of inclu-
sion/exclusion to ρx and define ρ̃x . The combinatorial linked cluster theorem relates
ρconn and ρ̃x :

Theorem 10 (Combinatorial linked cluster theorem) We have, for an arbitrary basis
element in a free or free commutative combinatorial Hopf algebra whose generators
are primitive elements:

ρconn(x) = ρ̃x (1̂).

We have indeed:

ρ̃x (1̂) =
∑

t

ρx (t)μ(t, 1̂)

where t runs over the partitions of S and (with the usual notations) μ(t, 1̂) =
(−1)|t |+1(|t | − 1)!. On the other hand, ρx (t) = ρ(xT1) . . . ρ(xTk ) and ρ(xTi ) =
∑

�i

s
xTi
�i
τ(�i ). Lemma 9 ensures that sx

�1· ··· ·�k
= s

xT1
�1
. . . s

xTk
�k

, and we get finally:

ρ̃x (1̂) =
∑

T1
∐··· ∐ Tk=S

(−1)k+1(k − 1)!
∑

�1,...,�k

sx
�1· ··· ·�k

τ(�1) · · · · · τ(�k),

where �i is a graph showing up in the expansion of ρ(xT1).
Let now � be an arbitrary graph with sx

� �= 0. The graph decomposes uniquely
as a union of topologically disjoint graphs �1

∐ · · · ∐�n , where n is the number
of connected components of �. We write Si for sup(�i ) and S� = {S1, . . . , Sn}.
We have to show that the coefficient of τ(�) in the right hand side of the previous
equation is equal to sx

� if n = 1 and to 0 else. The first property is immediate, since if
� is connected it appears only in the term associated to the trivial partition 1̂ of S and
therefore with the coefficient (−1)20!sx

� = sx
� .

The second property is slightly less immediate, but follows from the principles
of Möbius inversion together with Lemma 9. Notice first that � appears in the right
hand side of the equation in association to all partitions of which S� is a refinement.

123



J Math Chem (2012) 50:552–576 569

The coefficient of � is therefore:
⎡

⎣
∑

s�≤t≤1̂

(−1)|t |+1(|t | − 1)!
⎤

⎦ sx
�

which is zero as a consequence of the identity ζ ∗ μ(S�, 1̂) = δ(S�, 1̂) = 0 in the
partition lattice.

9 The functional linked cluster theorem

A linear form ρ on a free or free commutative combinatorial Hopf algebra H is
called symmetric if it is invariant by a bijective relabelling of the variables xi -
so that ρ(φ1(x2)

8φ3(x5)
2φ2(x9)

3) = ρ(φ1(x4)
8φ3(x2)

2φ2(x1)
3), and so on. When

X is ordered, the form is called quasi-symmetric if it is invariant by a (strictly)
increasing relabeling of the variables, so that e.g. ρ(φ1(x2)

8φ3(x5)
2φ2(x9)

3) =
ρ(φ1(x4)

8φ3(x5)
2φ2(x8)

3), but is not necessarily equal to ρ(φ1(x4)
8φ3(x2)

2φ2(x1)
3).

Let us consider now a symmetric or quasi-symmetric unital form ρ on H , where
H is as in Sect. 6 with an infinite ordered index set X . For notational simplicity, we
will assume that X = N. That is, H is an algebra of polynomials (resp. of tensors)
over a doubly indexed set of formal, commuting (resp. noncommuting), and primitive
variables φi (xS)where S runs over finite subsets of X and i = 1 . . . nk , where k = |S|
and where the sequence of the nk, k ∈ N is a fixed sequence of integers.

We first generalize the construction of the “interaction term” P in Sect. 7 as follows.
We let P = P(T )T ⊂X be a family of elements of H such that P(T ) is a polynomial
(resp. a tensor) in the φi (xS), S ⊂ T .

Definition 11 We say that P is admissible if and only if

1. For any order-preserving bijection φ from T to R, φ(P(T )) = P(R).
2. For any T and any partition U

∐
V = T (where U and V inherit the natural order

on T ), we have:

∑

b

μb(Pb)U ⊗ (Pb)V = P(U )⊗ P(V ),

where P(T ) = ∑
b μb Pb is the unique decomposition of P(T ) as a linear com-

bination of basis elements.

We let the reader check that the map P constructed in Sect. 7 satisfies this require-
ment.

The composition of ρ with P is a “scalar species”: the value ρ̂(S) := ρ ◦ P(S)
depends only on the number of elements in S (in the quasi-symmetric case, an increas-
ing bijection induces the identity ρ̂(S) = ρ̂(T )) so that if we set ρ̂(|S|) := ρ̂(S)

|S|! , the
scalar species ρ̂ is entirely characterized by the formal power series

ρ̂(x) :=
∑

n

ρ̂(n)xn .
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This straightforward remark connects QFT and many-body theory with the various
algebraic structures existing on the algebra of formal power series. Although appar-
ently uselessly pedantical, it is actually useful to understand how these structures
connect to the ones existing on scalar species.

There exists a Hopf-like structure on linear combinations of finite sets (see e.g.
[12,16] for various developments of these ideas and the related notion of twisted
algebras). The coproduct is defined by:

δ(S) :=
∑

U
∐

T =S

U ⊗ T

where
∐

stands for the disjoint union, whereas the product is simply induced by the
disjoint union of sets (the product of two overlapping sets is not defined). These maps
induce a convolution product written � (to distinguish it from the convolution product
of forms on H ) on scalar species: for α, β two scalar species we get:

α � β(S) :=
∑

U
∐

T =S

α(U )β(T ),

or: α � β(x) = α(x)β(x).

Theorem 12 (General functional linked cluster theorem) We have, for any unital nat-
ural form ρ on H and admissible P:

log(ρ̂(x)) =
∑

n

∑

�c
n

sn
�c

n

n! τ(�
c
n)x

n,

where τ := log∗(ρ), �c
n runs over the connected Feynman diagrams with vertex set

[n] and sn
�c

n
:= ∑

b
λbsb

�c
n
, where P([n]) = ∑

b
λbb is the decomposition of P([n]) as a

linear combination of basis elements.

Proof We have:

log(ρ̂(x)) = (log� ρ̂)(x) =
∑

n

(log� ρ̂)([n])
n! xn

=
∑

n

xn

n!
∑

I1
∐···∐ Ik=[n]

(−1)k+1

k
ρ̂(I1) . . . ρ̂(Ik)

=
∑

n

xn

n!
∑

k

(−1)k+1

k

∑

I1
∐···∐ Ik=[n]

∑

�I1 ,...,�Ik

si1
�I1
. . . sik

�Ik
τ(�I1) . . . τ (�Ik )

=
∑

n

xn

n!
∑

k

(−1)k+1

k

∑

I1
∐···∐ Ik=[n]

∑

�I1 ,...,�Ik

si1
�I1
. . . sik

�Ik
τ(�I1 . . . �Ik )
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where �Ii runs over the Feynman brackets in the expansion of ρ̂(Ii ), i1 := |Ii |
and �i� j denotes the concatenation of two brackets (so that e.g.
[φ(x1)|φ(x5)

2φ(x8)][φ(x2)
3|φ(x1)] = [φ(x1)|φ(x5)

2φ(x8)|φ(x2)
3|φ(x1)]).

Now, let � = �1
∐ · · · ∐�p be the (unique) decomposition of a Feynman dia-

gram showing up in the expansion of ρ̂([n]) into a product of connected (non
empty) diagrams. According to Lemma 7 and since P is admissible, for any parti-
tion A1

∐ · · · ∐ Al of [p], we have sa1
�A1

. . . san
�Al

= sn
� , where �Ai := ∐

j∈Ai
� j and

ai is the number of vertices of �Ai .
The Theorem amounts then to the following properties: the coefficient of τ(�) in

log(ρ̂(x)) is
sn
�

n! xn if p = 1 (that is if the graph is connected) and zero else. The first
property (the connected case) is obvious from the expansion. Let us assume there-
fore that p > 1. The property follows once again from the general properties of the
partition posets: the equation (1) concludes the proof. ��

10 Examples

10.1 Quantum field theory

In the quantum theory of the scalar field, the underlying Hopf algebra is the bosonic
algebra BX

k , where k is the number of fields and the elements of X stand for dummy
position or momentum variables.

A typical example is the φ4 (scalar) theory with k = 1 (we write simply φ for φ1).
The form ρ computes expectation values of time ordered products of free fields over
the vacuum:

ρ(φ(x1) . . . φ(xk)) :=< 0|T (φ(x1) . . . φ(xk))|0 > .

Problems arise when some of the xi s coincide; these problems are the subject of
the renormalization theory, we do not address them here. The physically interesting
quantities are the interacting Green functions

G(x1, . . . , xn) :=
ρ
(
φ(x1) . . . φ(xk)ei

∫
φ4(x)dx

)

ρ
(

ei
∫
φ4(x)dx

) . (2)

The key point is that ρ = exp∗ τ , where τ is zero if its argument has degree differ-
ent from two and τ

(
φ(x)φ(y)

) :=< 0|T (φ(x)φ(y))|0 > is the Feynman propagator.
The convolution logarithm can then be written as a sum of Feynman diagrams, where
the lines represent Feynman propagators and the vertices represent spacetime points
xi . It can be checked that the standard Feynman rules of quantum field theory [6] are
exactly recovered by the convolution exponential [25]. The linked-cluster expansion
provides a simple way to deal with the denominator of Eq. (2) [26].
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10.2 Cumulants

Let X1, . . . , Xn, . . . be a sequence of random variables. The underlying Hopf algebra
for this example is once again the bosonic algebra BN

1 . The form ρ is defined by:

ρ(φ(xi1) . . . φ(xik )) := E[Xi1 . . . Xik ].

This example enters the general commutative local case.
When all the xi s are distinct, ρ(φ(xi1) . . . φ(xik )) can be expanded as a sum param-

eterized by Feynman graphs which are disjoint unions of elementary graphs made of
distinct black vertices, each joined to a unique white vertex. The connected Feynman
graphs appearing in the expansion correspond to the cumulants Ec[Xi1 . . . Xik ]. The
combinatorial linked cluster actually shows that this graphical expansion is equivalent
to the classical identity:

E[X1 . . . Xn] = Ec[X1 . . . Xn] +
∑

A1∪···∪Ak

k∏

i=1

Ec[Xai
1
. . . Xai

ji
],

where A1 ∪ · · · ∪ Ak runs over the proper partitions of [n] and Ai = {ai
1, . . . , ai

ji
}.

When the Xi are copies of a given random variable X and setting P([n]) :=
φ(x1) . . . φ(xn) (which is admissible), we recover, using the functional linked cluster
theorem:

< eX >c −1 = log(E(eX )),

with the convention < 1 >c= 1 and < Xn >c:= Ec[X1 . . . Xn].

10.3 Quantum field theory with initial correlation

In solid state physics and quantum chemistry, the initial state is generally different
from the vacuum. The physically relevant form becomes (with the same notation as
in the first example)

ρ(φ(x1) . . . φ(xk)) :=< �|T (φ(x1) . . . φ(xk))|� >,

where |� > is a general state. It is also possible to consider a mixed state instead of
the pure state |�〉. Except for very special cases (quasi-free states for bosonic fields
and Slater determinants for fermionic fields) the convolution logarithm τ of ρ is then
more complicated than in the first example. In particular, τ can be nonzero if its argu-
ment have degree different from two. In quantum optics, expansions in terms of τ
are known as cluster expansions and they lead to much better convergence proper-
ties [27]. For the fermionic fields, the convolution logarithms τ are equivalent to the
cumulants of the reduced density matrices, that are strongly advocated by Kutzelnigg
and Mukherjee [28–31].
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The diagrammatic expansions can then not be done anymore using Feynman dia-
grams constructed out of Feynman propagators: see e.g. our [4] and require the full
apparatus of generalized Feynman diagrams for commutative local case.

10.4 Non-Gaussian measures

Perturbative expansions in statistical physics for measures of Gaussian type can be
performed using the usual Feynman graphs of Sect. 10.1. This is because the Wick
theorem applies. When dealing with arbitrary functional measures this is not the case
any more: higher cumulants (i.e. higher truncated moments or truncated Schwinger
functions) have to be taken into account.

Feynman graphs and linked-cluster theorems have been developed by Djah and
coll. [5] in this framework. They were extensively used in several problems of proba-
bility theory [32–34]. These Feynman diagrams are equivalent to those of a quantum
field theory with initial correlation.

10.5 Free probabilities

Free probabilities deal with the noncommutative local case and study linear forms on
the tensor algebra FN

1 . In general, the graphs required to study such forms are free
interaction graphs.

In practice, the theory of free probabilities focus often on linear forms with par-
ticular properties. This allows for various simplifications and typical properties as
far as the corresponding cumulant expansions and their diagrammatic expansions are
concerned. In particular, the Speicher’s notion of free (or noncrossing) cumulant is
obtained from the moment generating function by Möbius inversion with respect to
the lattice of noncrossing partitions (and not with respect to the lattice of partitions),
see e.g. [35] for further details and references on the subject.

10.6 Truncated Wightman distributions

In axiomatic quantum field theory, the form used in Sect. 10.1 are replaced by

W (x1, . . . , xn) :=< �|φH (x1) . . . φH (xk)|� >,

where the operator product is used instead of the time-ordered product, the fields
are written in the Heisenberg picture and |�〉 is the ground state of the interacting
system. Such functions are called Wightman distributions or correlation functions.
The main difference with the standard case is that the Wightman distributions are
not symmetric, the order of the arguments is fixed. Still, there is a perturbation the-
ory of Wightman functions that leads to non-commutative Feynman diagrams [36].
Their combinatorics is the same as for the standard case [37]. Thus, the corresponding
convolution logarithm τ is again zero if its argument is not of degree two, but now
τ
(
φ(x), φ(y)

) = 〈0|φ(x)φ(y)|0〉 is different from τ
(
φ(y), φ(x)

)
.
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However, it is also possible to work at the non-perturbative level and to define the
form ρ

(
φ(x1) . . . φ(xn)

) := W (x1, . . . , xn). In that case, the convolution logarithm
τ is generally not zero if its argument is not of degree two and τ

(
φ(x1) . . . φ(xn)

)
is

now called a truncated Wightman distribution.
The definition of truncated Wightman distributions was first given by Rudolf Haag

in 1958 [38]. We follow (up to the order of the variables) the definition of Sandars’
paper [39]: For n ≥ 1 we let Pn denote the set of all partitions of the set {1, . . . , n}
into pairwise disjoint subsets, which are ordered from low to high. If r is an ordered
set in the partition P ∈ Pn we write r ∈ P and we denote the elements of r by
r(1) < · · · < r(|r |), where |r | is the number of elements of r . The truncated n-point
distributions ωT

n , n ≥ 1 of a state ω are defined implicitly in terms of the n-point
distributions

ω
(
ϕ(x1), . . . , ϕ(xn)

) =
∑

P∈Pn

∏

r∈P

ωT|r |(xr(1), . . . , xr(|r |)).

This is exactly the relation between ρ = exp∗ τ and τ for non-commuting variables.
From the physical point of view, the truncation procedure eliminates the contribu-

tion of the vacuum state as an intermediate state [40, p. 271]. Truncated distributions
have many desirable properties. For instance, they decrease much faster than Wight-
man distributions at large space-like separation [41].

10.7 Nonrelativistic systems with Coulomb interaction

Let us neglect here the problem of dealing with the Fermi statistics (which amounts
essentially to introducing the correct signs in the definition of the Hopf algebra struc-
tures, see e.g. [14,15]).

Let us consider n electrons in a quantum system of non-relativistic electrons with
a Coulomb interaction in the external field generated by nuclei. This is the standard
approach of quantum chemistry and solid-state physics.

We assume that the non-interacting state can be described by a Slater determinant
and that the particle-hole transformation was used to deal with occupied states. The
form is defined as in Sect. 10.1 and the Green functions are now

G(x1, . . . , xn, y1, . . . , yn) :=
ρ
(
ψ(x1) . . . ψ(xn)ψ

†(y1) . . . ψ
†(yn)e−i I

)

ρ(e−i I )
,

where

I = e2
∫

dtdrdr′ψ†(r, t)ψ†(r′, t)ψ(r′, t)ψ(r, t)

8πε0|r − r′| .

The main difference with quantum field theory is that the interaction is not local.
Still, in the linked-cluster expansion, we want to consider that the points r and r′ in I
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are connected. In diagrammatic terms, r and r′ are connected by a wavy line. We
introduced the tripartite graphs to deal with this important case.

Acknowledgments We are particularly grateful to R. Stora. Many letters and documents (among which
[7]) he sent us were the initial incentive for the present article -that was conceived to bridge the computations
in [4] with other approaches to quantum field computations and find some suitable mathematical framework
for the (much more advanced) problems these documents suggest. In particular, we aimed at developing a
mathematical framework to deal with products of Wightman fields and their average values over general
states, one of the problems this article addresses.
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